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THE HYPERSONIC AREA RULE

M. D. Ladyzhenskiy (Moscow)

The hypersonic area rule has been formulated in a
work [i1 and in a hypothesis [2 that all the mass of
a gas is concentrated in an infinitely thin layer
contiguous to the shcck wave. According to that rule
when thin non-axially-symmetrical blunt bodies with
the same bluntness drag values and the same laws
of transverse area change in the direction of the
stream, are subjected to flow, the shock-wave sur-
faces, the laws of pressure change, and consequently
also the forces of resistance acting on the body
coincide, and in this process the surfaces of the
shock waves have axial symmetry.

i. Determining the results' bounds of applicability ii. As

an example of applying the hypersonic area rule [Il let us construct

a body equivalent to a thin cone of revolution, i.e, having the same

bluntness drag values and the same law of cross-sectional area change

in the stream direction as a cone. The cross-section of the body

is assumed to be elliptical, the larger semiaxis of which equals the

radius of the shock wave and the area of which equals the area of the

cross-section of the cone of revolution (Fig. i). In other words the

eccentricity of the ellipse in each section has the largest possible

value compatible with the demand (condition 3 in work [I1) that the
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body must not exceed the volume delimited by the shock wave.

As was noted in thc ,,,,rk [ii the area rule may be combined with

the law of similarity in the flow about ti,.L, b.lvt bodies [2], as a

result of which dimensionless values characterizing the flow are defined

at a fixed value of the index of adiabatic curve % by two dimensionless

parameters: the known parameter of similarity of flow about thin

blunt bodies K = M T and the parameter K1 = r/2cxS)i/2L r2, character-

izing the effect of bluntness and equal in order of size to the

square root of the ratio of body drag to bluntness drag. Here T-Si/2/L

is a small dimensionless value characterizing the thickness of the

body; S. is a certain representative area of the body's cross-section;

L is the length of the body; cx, S are coefficient of bluntness drag

and the area of the mid-section of the bluntness [surface area per

unit depth] respectively.

The shape of the bluntness is non-essential in the assumption

[1] that the effect of bluntness may be replaced by the effect of a

blast at the forward point of the body with an energy equal to blunt-

ness drag. In view of this the area of bluntness S is introduced

into the expression for K, instead of the diameter of the bluntness.

Let us suppose that the Mach number M. of the free stream equals

infinity. Then when x is fixed the dimensionless variables will

depend upon the single parameter K1 .

Figure 2 shows in the form of curves (for the case of K = i.4)

the relationships of the values k (ratio of the major to the minor

semiaxis) and (X - Xo)/Xo (ratio of body drag without bluntness

drag to bluntness drag) in the function K, = (/2cxS)±/2L tan2 a where

a is half the apex angle of the circular cone. The shape of the

shock wave was defined from the solution of the problem of flow
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around a thin blunted cone in accordance with Chernyy [2]. It is

sensible to use the area rule when X/Xo > 1.1, which, as follows

from Fig. 2, corresponds to K, > 0.1. At lesser values of K1 the

body drag is practically determined by the value of the bluntness

drag. At large values of K, the area rule becoms invalid when k

approaches unity (more accurately when k-i - (x-i)/(t+1) [13), which

occurs approximately at K, = 1.2.

Thus, the range of application of the area rule lies within the

limits 0.1 < K, < 1.2. Moreover the ellipse in the cross-section of

the body may have an amply extended shape differing from a circle

(13.L k L 1.3). This result may be of practical interest. But seeing

that the results are obtained in rough assumptions about the concen-

tration of all the gas's mass in an infinitely thin layer behind the

shock wave we must define more exactly the area rule.

2. A more exact definition of the area rule. As before we

assume that M > 1, but in contrast to another work [1], we do not

impose the compulsory condition MT > 1. We introduce a cylindrical

system of coordinates xL, yL, 0 (the x axis passes through the leading

point of the body and is directed along the stream). Let us designate

by uU., vU, wU the components of the velocity in the axial, radial,

and circular directions respectively; pp U2C is the pressure, pp.

the density, U. the velocity of the free stream along the x axis,

p its density. We will characterize the bluntness value with the

dimensionless bluntness diameter dL, where d is a small quantity. We

will write the equation of the body surface in the form y = Tf(x, 0).

Let us separate the entropic layer, i:e., the region occupied by

the lines of flow which have passed that area of the zurface of the

shock wave where the angles of inclination formed by the surface of the
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shock wave with the direction of the free flow are not small (Fig. 3).

Let the equation of the provisorily interpolated boundary of the

entropic layer be y = 6q(x, 0) where 6 is a small quantity. Beginning

at a certain x = xo  d the angles of inclination of the boundary of

the entropic layer will have order 6.

Below are listed the estimates of the parameters of the stream in

the entropic layer similar to those outlined in another work [131. Let

us also note that the influence of the entropic layer on the pressure

distribution on a thin blunt cone is also examined in a work [4].

Let us assume that on the surface of the entropic layer the

relationship p - da holds true, where a is a positive number which

can be determined.

As results from the following, the order of pressure across the
a

entropic layer is sustained, therefore we may write p - dW for the

density, using the conditions of adiabaticity. Let us now write the

continuity equation for the entropic layer. Equating the flow rate in

the entropic layer with the flow rate in the stream channel in the

free stream across an area equal to the midsection of the bluntness

we have

where a is the area occupied by the entropic layer in the cross-

section where x = const (hatched in Fig. 3). Insofar as this follows

from the Bernouilli equation in the entropic layer u - i we have

= d2 = a It is obvious that for 6 entering the boundary equation

of the entropic layer we get the evaluation

6 .- S-;-a,(2)

where S is the area of a cross-section of the body. Let us require

that the area of the body in its order of magnitude not exceed the
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entropic layer S < a. Then, obviously

(3)

Since the usual estimate p _ 62 for the hypersonic stream on the

exterior boundary of the entropic layer is correct for pressure we

derive the equation for determining a:

d d , 2x(4

Finally for the stream parameters in the entropic layer we have:
--' ' (5)

(j-4k 1

on condition that T and d are connected in order of values by the

relationship derived from the condition S - a:

X

This relationship practically coincides with the condition T --

expressing the fact that body drag is comparable in order of magnitude

with bluntness drag [2].

Let us estimate the pressure drop in the entropic layer.

We have from the equation of motion

,, ___ - -,,-+ --; , (.

a Op " Ow (, U' d
Jlp I Y -Y

Consequently aJ" - - , since all terms on the right side of Eq. 7

are of the same order of smallness. Hence, taking Eqs.5 and 6 into

consideration, the following estimate is correct for the drop in

pressure in the radial as well as in the circular direction:

2AP :11

Thus the pressure in the entropic layer may be considered constant

with a relative error
A 2

P(8)

somewhat greater than the relative error in the theory of slight
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disturbances in the hypersonic stream, equalling T2 as is well known.

Let us formulate the flow problem. When x < x0 let there be an

axisymmetrical nose-piece of a body with an axis of symmetry along

the x axis, the flow about which is completely calculated. As follows

from what has been set forth, since the entropic layer cannot restrain

the drop in pressure in the circular direction the pressure in the

cross-section where x = const in the area where x > x on the exterior

boundary of the layer must be constant. To fulfill this condition it

is enough that the surface delimiting the entropic layer have axial

symmetry. (Its equation may moreover be written y = 6Y(x).)

Then the flow outside of the entropic layer, axisymmetrical

according to agreement when x < x0 , preserves axial symmetry also

when x > x, and, consequently the stipulation that the pressure be

constant in the circular direction on the exterior boundary of the

entropic layer will be fulfilled.

Let us derive the equation connecting S and a when x > xo, for

which, as in Sychev [3], we use the continuity equation. We will

designate values in the surface x0 with the subscript 0. Separating

the elementary stream channel in the entropy layer we will write this

flow-rate equation for it:

PouoyodOodyo= ptyd~dy. (9)

From adiabaticity equations of Bernouilli, too, who rejects terms

of order T, we have for p and u:

-(,-+ P - (10)
A-- PO P (Z-1)M

Let us analyze Eq. 9 for pu and integrate over the whole area of the

entropy layer in the cross-section x = x0 (we utilize the circumstance

that the coordinates of the chosen current lines y and 0 satisfy the
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relationships y = Y(y o0 ), e = e(yo; eo)). On the right side of the

equality we obviously will obtain area a occupied by the entropy layer

in cross-section x. Taking into consideration the axisymmetry of the

boundary of the entropy layer we have a = 7e 2Y2 (x) - S. Finally, the

desired relationship is written
t62y2 (a) - F ) P (.).

t 2c

x 11j2  xi PO PO.

Axisymmetrical flow outside the Entropy layer when x > x0 may be

computed by one of the known exact methods, e.g., by the method of

characteristics. The boundary of the entropy layer will be defined

moreover in the process of solving from Eq. ii which plays the role

of an edge condition replacing the condition of non-flow. Hence it

follows that flow when x > xo is completely determined by the assign-

ment of a law of change in the area of the cross-section of the body

S(x). In this. one must impose one more obvious limitation on the

shape of the body: it cannot exceed the limits of the "entropy circle"

(see Fig. 3), which may be symbolically written

s 1. (12)

We may now formulate the more precise hypersonic area rule 'in the

following way. When thin blunt bodies having axisymmetrical nose-

pieces coinciding for some distance from the leading point of the

body and having also the same laws of change in the areas of the

cross-section of the remaining parts:

a) flows outside of the entropy layers are axisymmetrical; the

parameters of the flows at corresponding points, the surfaces of the

shock waves, and the provisorily introduced boundaries of the entropy

layers coincide;
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b) pressure in the entropy layers depends only on x and the law

of pressure change is the same for the bodies under investigation;

as a result of this the resistance forces acting on the bodies are

equal as the resistance X is expressed in the form

where X is the resistance of the nosepiece of the body. In addition

it is assumed that conditions 6 and 12 are fulfilled.

The results obtained are easily generalized to the case of flows

with dissociation. A consideration of these phenomena leads only to

a change in the form of function F(p) in Eq. i.

3. Comparison of the results. Let us compare the result we

have obtained with the area rule proven in another work [i1. The

requirement for the coincidence of the laws of change in area of a

cross-section in the direction of the x axis and also the stipulation

that body drag must not exceed bluntness drag in order of magnitude are

common to both theorems. The difference in the theorem proven in section

2 in the formulation e-onsists in the following:

a) the obligatory condition M T > I is not imposed as is done

in the other work [i;

b) instead of the requirement for equality in the magnitudes of

bluntness resistance [I1 a more severe limitation is imposed: the

nosepieces of the equivalent bodies must coincide in form, being

axisymmetrical;

c) instead of condition 3 in the work [IJ,according to which the

body does not exceed the volume delimited by the surface of the shock

wave, the severer limitation 12 is imposed that the body must not exceed

the limits of the inner boundary of the entropy layer.
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As a result of this we may expect that the values of k found in

section I characterizing the difference of cross-section of the body

from the cross-section of the equivalent body of revolution are some-

what too high.

.J

Fig. i. 0.1 $

i)Shock wave; 2) Fig. 2.

cross section of
the circular body;
3) cross section of
the equivalent body.

I) Shock wave;
2 entropic layer -,
3) body

Fig. 3.
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